

Name: Doe, Jane Test Date: 10:25 AM; August 10, 2023 Subject ID: Report Printed on: 9:22 AM; August 11, 2023 Gender: Female Height Weight Age Resistance Reactance Frame Target Weight Activity Level Equation Set 69.0 ft 174.0 kg 74.0 596.6 Ω 60.2 Ω Small 170.0 Moderate NHANES-III kg **Current Test Data** ٨

	Amount									
Weig	ht 174.0 kg	% of Weight								
F	at 108.9 kg	62.6 %								
Fat-Free Mass (FF	M) 65.1 kg	37.4 %	% of FFM							
Lean Dry Mass (LD	M) 18.5 kg	10.6 %	28.4 %							
Total Body Water (TB)	N) 46.6 kg	26.8 %	71.6 %	% of TBW						
Intra-Cellular Water (IC)	N) 21.3 kg	12.2 %	32.7 %	45.7 %						
Extra-Cellular Water (EC)	N) 25.3 kg	14.5 %	38.9 %	54.3 %						
BMI 5	6.6	Basal Metabo	lic Rate (BMR)	1889.1 kCal						
Phase Angle 5	5.8	Daily Energy Expe	enditure (DEE)	3022.6 kCal						
Average Ranges										
	Amount									
Weight	53.5 - 82.9 kg	% of Weight								
Fat	16.3 - 35.4 kg	29.9 - 43.7 %								
Fat-Free Mass (FFM)	36.0 - 48.8 kg	56.3 - 70.1 %	% of FFM							
Lean Dry Mass (LDM)	8.9 - 12.2 kg	13.9 - 17.8 %	23.6 - 26.4 %							
Total Body Water (TBW)	26.9 - 36.7 kg	42.1 - 52.6 %	73.6 - 76.4 %	% of TBW						
Intra-Cellular Water (ICW)	14.7 - 18.7 kg	21.7 - 28.3 %	37.9 - 41.2 %	50.7 - 54.8 %						
Extra-Cellular Water (ECW)	12.2 - 18.0 kg	20.1 - 24.6 %	33.7 - 37.2 %	45.2 - 49.3 %						
BMI 21.9 -	33.0	Basal Metabolic Ra	te (BMR) 1098	3.5 - 1393.2 kCal						
Phase Angle 5.2 -	7.2									

Estimated Body Composition

History

	10/17/2020 8:00 AM1	.1/12/2021 7:02 AM 3	3/29/2022 10:36 AM 6	5/21/2022 12:02 PM9)/19/2022 11:26 AM
Height	69.0	69.0	69.0	69.0	69.0
Weight	170.0	175.0	178.0	180.0	180.0
Age	72.0	73.0	73.0	73.0	73.0
Gender	Female	Female	Female	Female	Female
R	550.2	568.7	555.3	530.2	550.0
Хс	62.9	58.9	58.4	50.6	56.8
Frame	Small	Small	Small	Small	Small
Activity Level	Moderate	Moderate	Moderate	Light	Very Light
equation_set	NHANES-III	NHANES-III	NHANES-III	NHANES-III	NHANES-III
Target Weight	65.8	65.8	170.0	168.0	65.8
BMI	55.3	57.0	58.0	58.6	58.6
PA	6.5	5.9	6.0	5.5	5.9
BMR	1922.4	1919.8	1944.5	1980.9	1957.4
DEE	3075.8	3071.6	3111.2	2971.3	2544.6
Fat	103.3	108.4	110.2	110.5	111.6
Fat % of Weight	60.8 %	62.0 %	61.9 %	61.4 %	62.0 %
FFM	66.7	66.6	67.8	69.5	68.4
FFM % of Weight	39.2 %	38.0 %	38.1 %	38.6 %	38.0 %
LDM	18.6	18.7	19.0	19.4	19.2
LDM % of Weight	10.9 %	10.7 %	<u>10.7 %</u>	10.8 %	10.6 %
LDM % of FFM	27.9 %	28.1 %	28.0 %	27.8 %	28.0 %
TBW	48.1	47.8	48.8	50.2	49.2
TBW % of Weight	28.3 %	27.3 %	27.4 %	27.9 %	27.3 %
TBW % of FFM	72.1 %	71.9 %	72.0 %	72.2 %	72.0 %
ICW	22.3	21.9	22.3	22.6	22.4
ICW % of TBW	46.4 %	45.7 %	45.7 %	45.0 %	45.5 %
ECW	25.7	25.9	26.5	27.6	26.8
ECW % of TBW	53.6 %	54.3 %	54.3 %	55.0 %	54.5 %

	8/10/2023 10·25 AM
Height	<u>69 0</u>
Weight	174.0
Δαρ	74.0
Condor	<u> </u>
D	506.6
N Ve	
Framo	
	Moderate
Activity Level	
equation_set	<u>INTIANES-III</u>
larget weight	1/0.0
BMI	56.6
PA	5.8
BMR	<u> </u>
DEE	3022.6
Fat	108.9
Fat % of Weight	<u> </u>
FFM	65.1
FFM % of Weight	37.4 %
LDM	18.5
LDM % of Weight	10.6 %
LDM % of FFM	28.4 %
TBW	46.6
TBW % of Weight	26.8 %
TBW % of FFM	71.6 %
ICW	21.3
ICW % of TBW	45.7 %
ECW	25.3
ECW % of TBW	54.3 %

What do the Results Mean?

Weight

This number is your total body weight. Knowing the actual composition of the body is much more valuable when designing strategies for optimal health.

Target Weight

This target is calculated using a set of standardized formulas. Your practitioner can choose to manually enter a different target weight, if desired.

Body Mass Index

The BMI is derived by dividing total weight (kilograms) by height (meters), squared. BMI is a general measure typically used to determine if someone is overweight. However, knowing the actual composition of the body is much more accurate. For example, two people could be the same height and weight, but the actual fat, fat free mass and other measures could vary greatly.

FAT

There are many reasons we need an appropriate amount of body fat. Fat is important for energy storage, insulation and warmth, and for the absorption of fat soluble vitamins, for example.

Fat Free Mass (FFM)

The FFM value represents everything added up in your body, except for the fat. FFM can also be referred to as Lean Body Mass.

Lean Dry Mass (LDM)

The LDM value is derived by subtracting all of the water from the Fat Free Mass.

Total Body Water (TBW)

TBW is the total amount of water within the body, both inside and outside of the cells.

Intra-Cellular Water (ICW)

The ICW value represents the portion of Total Body Water that is located inside of our cells.

Extra-Cellular Water (ECW)

The ECW value represents the portion of Total Body Water that is located outside of our cells, for example: blood plasma, spinal fluid, joint fluid, and edema.

Basal Metabolic Rate (BMR)

BMR (sometimes also called "Resting Metabolic Rate", or RMR) is the number of calories that a person would burn during 24 hours spent completely at rest.

Daily Energy Expenditure (DEE)

DEE adjusts the BMR value based on the selected activity level, to get an estimate of how many calories are burned, in total, during the course of a typical day. If you regularly eat more than this many calories, you can expect to gain weight. If you regularly eat less, you can expect to lose weight. Again, remember that upgrading the quality of the calories you eat can help you obtain your weight and health goals more efficiently.

Phase Angle

The PA reflects the relative contributions of fluid (resistance), and cellular membranes (capacitive reactance). It is calculated as the arctangent of reactance over resistance, measured in degrees. Typical Phase Angle measurements (NHANES human data) range between 4 - 9.

References

 Accuracy of Bioelectrical Impedance Analysis in Estimation of Extracellular Space in Healthy Subjects and in Fluid Retention States. Giuseppe Sergi, et. al. Annals of Nutrition and Metabolism (1994) 38, 158-165 Body composition estimates from NHANES-III bioelectrical impedance data. WC Chumlea, SS Guo, et. al. 	
 Body composition estimates from NHANES-III bioelectrical impedance data. WC Chumlea, SS Guo, et. al. 	
International Journal of Obesity (2002) 26, 1596-1609	
Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys. Shumei S Sun, et. al.	
American Journal of Clinical Nutrition (2003) 77, 331-40	
Differences in resting metabolic rate between paraplegic and able-bodied subjects are explained by differences in be composition.	ody
AC Buchholz, et al.	
Am J Clin Nutr. 2003 Feb;77(2):371-8.	
Fundamentals of physics : extended, with modern physics	
David Halliday; Robert Resnick; Jearl Walker	
Developed Characteristics	
Privisical Characteristics Decommended Distance Allowences, 10th Edition	
National Academy Press 1989-1999	
ISBN: 0-309-04633-5	
Online: http://books.nap.edu/catalog/1349.html	
Therapy: changing dietary concepts.	
Hamwi GJ.	
Diabetes Mellitus: Diagnosis and Treatment 1964(1):73-78	